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Abstract

Some extremal problems between the generalized Hua domain of the first type and the unit ball are studied. The ex-

tremal mapping and extremal value in explicit formulas are also obtained.
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Let M be a domain in C" and p &€ M. Let M,
denote the couple (M, p), a “pointed domain”. For
two pointed domains M, and N,, let Hol (M,, N,)
denote the set of holomorphic mappings from M to N
that send p to g. A mapping f€ Hol (M,, N,) is
said to be Carathéodory extremal mapping (c-ex-
tremal mapping). If

{ detdf(p) | = supl| detdg(p) |:g
€ Hol(M,, N1, (1)
then | det df ( p) | is called Carathéodory extremal
value (c-extremal value). This is the classical ex-
tremal problem. The classical extremal problem is
similar to the classical Schwarz lemma, ']

sidered to be an extension of the classical Schwarz
[2]

and is con-
lemma in high dimensions'*’. For the extremal prob-
lem, an important part is to determine the explicit
formulas for the extremal mapping and extremal val-
ve. The c-extremal mapping was first studied by
Carathéodory and he cobtained the explicit formula for
c-extremal mapping from the polydisc into the ball'®!.
Explicit formulas for c-extremal mappings and values
from the symmetric domains into the ball were ob-
tained by Kubota!®>!. Ma!?) gave the explicit c-ex-
tremal mappings and values from the complex ellip-
soid to the unit ball. He also considered a new kind of

extremal problem:

Let Q, denote the set of all couples (M, p),
where M is a complex manifold of dimension n and
PEM. Let M,, N,€ Q,, we say that M, and N,
are biholomorphically equivalent, and write M, ~ N,
if there is a map f€ Hol (M,, N,) which is a biholo-

morphism. Obviously, ~ is an equivalence relation.

Let Q,=Q,/~. It M,€Q,, let Mp denote the e-
quivalence class to which M, belongs. Sometimes we
do not distinguish MP from M, if no ambiguity can
arise. Define
p(Mp,Nq) = infi-log | J,.;(p) I:
f € Hol(M,, N,), g € Hol(Ny, M,)1,

(2)
where M, N are domains in C*, J,(p): =detdf(p)
and M » denote the equivalence class to which M, be-
longs. Ma also obtained the extremal values between
the ball and the complex ellipsoid or between the
complex ellipsoid and the complex ellipsoid in some
cases of this kind of extremal problem. In general, it
is very difficult or impossible to obtain explicit formu-
las for the extremal mapping or value.

In 1998, Yin and Roos constructed four type do-
mains, called super-Cartan domains or Cartan-Har-

togs domains'®®!, and the first type super-Cartan
domain is
Y(N;m,n;K): = {WeC",Z € R(m,n):

| W 12K < det(I - ZZ"),K > 0},

where R;(m, n) denotes the Cartan domain of the
first type in the sense of Hua, Z' denotes the conju-
gate and transposed matrix of Z, det denotes the de-
terminant of a square matrix, N are positive inte-
gers, and %k are positive real numbers. The super-
Cartan domains are neither homogeneous domains nor
Reinhardt domains.

We have obtained the explicit formulas for the
extremal mapping and the value between the ball and
the super-Cartan domain of the first type when £ >1
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of the above mensioned two extremal problems (o1,

Yin!'? constructed four type domains in 2001,
called generalized Hua domains, and the first type
generalized Hua domain is

GHE,(Ny, =, N, 5m, 13 py s pysk)
—{w, € €2 € Ry(myn): D) ) w, 12,
i=1

< det(I - ZZDH%,j =1,-, r},
RS ij])yj :11 Sty Ty Nla R Nr

where w; = (w, ,
Iy
are positive integers and py,***, p, _;, p,; k are pos-

itive real numbers.

When r =1 and £ =1, it is the super-Cartan do-
main.

In this paper, the explicit formulas for extremal
values will be given between the ball and the general-
ized Hua domain of the first type. These results gen-
eralize the results of Refs.[2,9].

1 Preliminaries

Let T, denote the subset of Q, consisting of all
pointed taut manifolds, and similarly, T,=T,/~.

(T,, 1) is a metric spacel?’ .

If both M and N contain 0, we write JS (M,
N):=]JS(M,, Ny).

Obviously,
#(My, Ny) =~ log[JS(M,N) - JS(N,M)].
(3)

Proposition 1/27. If Dy, D, are belanced do-
mains (i.e. t2z€ D, for t€ A and z €D, (i =1,2),
where A denotes the unit disk), and if D, is a do-
main of holomorphy, then any holomorphic map f€
Hol((D{,0), (D,, 0)) satisfies df (0) (D)CD,.
Hence,

JS(Dy, Dy) =supil det! |:1 complex linear map,
1(Dy) C Dyt.
If both Dy and D, are balanced domains of holomor-
phy, then
#((D,0),(D;,0)) = inf{ - log
| det(m « 1) |:1, m complex linear maps,
1(Dy) C Dy, m(D,) C D,}.
In the sequel, we denote (M, N): = p (Mg, Ng).

Definition 1/>J. A Hermitian ellipsoid is a do-

main of the form
{z € C. Zajkzjik < 1},
Jok=1
where (a;,) is a positive definite Hermitian matrix.

Proposition 212}, Let D be a domain of dimen-
sion n containing 0. If / is a complex linear map such
that {(D)CB", then [ "'(B") is a Hermitian ellip-
soid containing D. If / is a solution to the extremal
problem

supi | detl [:lcomplex linear map, {(D) C B"},
then I "' (B") is a circumscribed Hermitian ellipsoid
of D of least volume, or minimal circumscribed Her-
mitian ellipsoid.

Proposition 3'2!. Let D be a bounded domain.
Then D has minimal circumscribed Hermitian ellip-
soid and the minimal circumscribed Hermitian ellip-
soid of D is unique.

For a bounded domain D, let P(D) denote the
minimal circumscribed Hermitian ellipsoid. It is easy

to check that GHE; is the balanced domain.

We denote Z = (2j4) uxn € R (m, n) and ar-
range the elements of the matrix Z in the form of a
vector in C™" ;

z = (le’ Ty Zins X215 Ty Tops U zmn)-
l=z1?=12Z1?=wu(zz").
Sometimes we do not distinguish z from Z if no am-
biguity can arise.

Proposition 4. The minimal circumscribed ellip-
soid of the generalized Hua domain of the first type
has the form

N +mn
A(al,-",a,,b) :{(wl’...’wr’z) c C:; o :

Dallw P+ lzI2< 1),
i=1

(4)
where a; >0, >0 (i=1,2, -, r).

Proof. It is similar to the proof of the Proposi-
tion 3.1 in Ref.[9].

Proposition . When p,=2km (i=1,2,-,r),
the unit ball By, .. is the inscribed unit ball of the
generalized Hua domain of the first type, where N =

>IN, .
=1

Proof. It is similar to the proof of the Proposi-
tion 3.2 in Ref.[9].
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2 The minimal circumscribed ellipsoid

For any m X n matrix Z (m<{n), there exist

unitary matrices U,, x, and V,x, such that!!!

'{1 O e 0 0 P O
0 2 0 0 -
Z=U 2 0 v,
0 0 - Xm 0 - 0
(Li=2,= 22, 20).
We denote Al———ﬁ,/\z:ig,"',km———ifn. Then
I Z1P= 324 24—+ 32
= A+ A+ -+,

det(I — ZZ") = (1 — A)(1 — Ap) (1 —4,).

To obtain the minimal circumscribed ellipsoid on
GHE;, we first find the maximum of the function

B'(ay, sa,3b) = Zaihi"'bz/\l (5)
i =1

fOr fixed A1y "'y Ay, b (a,‘>0’ b>0(l :1’ 2’ Ty T))
with the constraint
G,(hli '“vhr;"l’ Tty Am)

= SRR - [ - )L - ) (1= 2,01

=0, (6)
(1> k20, = 1,2, 73
oA <1,l=1,2,",m),
where k, = || w; 12, w,€C™,j=1,2,-,r.

Alay,ya,,b)=

= {(wl,"',w,,Z) E C

We then find the minimum of the function
¢(a19 Tty ar’ b)

N +mn 1 ~
=BT e N (10)
i=1

When we denote by wpn+m. the volume of
B mns #lay, 5 ar, b)* wNs mn is the volume of A

(aly Tty Ay b)

Lemma 1. When p;>km>=>1 (i=1,2,,7),
the maximal value of F{(h) cannot be attained at a
point (kq, -, h,) with some k; =0 and some h;70.

Proof. It is sufficient to consider the point &° =

»

(0, kY, -, h%) with D(h) : = D hY = 0(0< 8 <

e=1

1).

Let

The maximum of the function must exist because
the function was discussed on the close set.

By symmetry consideration, the above problem
is equal to finding the maximum of the function

B(al""yar;b) = Ea,'h,' + bmA (7)
i=1

for fixed ay, -

a,,b(a,>0,6>00i=1,2,",71))
with the constraint

G(hl’“"hr;x)
=2 -a-0m =0, (8)
i=1

(1>hj =20,j =12,,r;
0<KA<LAp = =2, =1),
where &, =l w, |%, w;ECY,j=1,2,,r.

Now the above conditional extremum problem
will be changed to the nonconditional extremum prob-
lem:

.F(h):

F(hy, -y h,)
r r 1

= Za,-hi + bm — bm( Ehf')km. (9)
1=1 i=1

lf we have obtained the maximum of F(A) and
denote it by s, for the fixed ay, =+, a,, b(a; >0,
5>0(i=1,2,,7r)), the circumscribed ellipsoid of
the generalized Hua domain of the first type is

s e
((wy,wn2) € CH  Nallw 1P +5 12 12< 5]

1=1

BN S e Lz <),

i=1
1 1

Re= (88", (1 - )RS, -,
1
?
(1-)r%, t€(0,1).
It is checked that D{(R*) =6

One may verify that
1

) Y _ 0
lim B = FC) 525,

t

v
t—~0

Thus, the maximal value cannot be attained at A,

Lemma 2. When p; > km=1(i =1,2,,r),
the maximal value of F (%) cannot be attaiped at a

point (hy,, h,) withall A, =0(i=1,2,, r).

Proof. Let #°=1(0,,0), k" =(¢,0,-,0).
Then similar to the Proof of Lemma 1, this Lemma

can be proved.
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By Lemma 1 and 2, we can obtain the following

lemma.

Lemma 3. When p; >km=>=>1 (i =1,2,, 1),
the maximal value of F (k) must be attained at a
point (hy, =+, h,) with0 < h; <1 (i = 1,2,,7)

and 0 < >, hh <1

i=1

By (9) andM 0(=1,2,-

, ", 7), we ob-

tain
—km
b ($ya0)
j=12,-,r. (11)
Therefore,
ka P_Pi_l e
G, 15 _ p; km 41 P
= - bt
ij (zh’ ) 7
j = 1,2, . (12)
Lemma 4. Let p; >km=1 (i=1,2,--,7) and
R L4
kay\ 17t [ kag ) P27t ka, |51
bpy bp. bp,

Then (11) must have solutions at a point (hy, ',

h,) with0< h; <1 (i =1,2,,7)and 0< >, k¥
=

< 1, and the solution is unique.

Proof. It is easy to check that

km =1 _p;
21@0(“—“]"” P'_1<1
i=1,2,,r
We first prove that the solution of (11) is attained at

P]>km

a point (hy, -, h,) with0 < D> k% < 1if the solu-
i=1

tion of (11) exists.

Let
E(pis =, prsmsk)

_ {(km -I)Pl (km _I)PZ
T e (py — 1) km(p, - 1)
(km - 1)p,

km(p,—l)}(<1)'

To seek a contradiction, we suppose that the so-
lution of (11) is attained at a point (hy, >+, h,) with

z R > 1. By (12) and the assumption, we know
i1

that

R L) f’:
p -1 kay ) P71

bp»

ka,

1>
bp,

- (km-1)p , (km-1)p
() O g () O kg
i=1 i=1

, (km-1)p
bt | thx)k”‘(l’r‘l) e

> | Z‘hf‘) Gt St

4 )I—E(pl,"'..b,;m;k)

= ( 23k

i=1
is not valid.

WV

Next, we prove the solution of (11) must exist
and be unique.

Let H = th" . By (12), we may obtain
=1

)4

, —t (km-1)p
Z(f—“i P gmeD T 21 (13)
y=1 Pj
Let
P
, — (km—-1)p
FCH) = | BT et
b,
Then
b
r k P71
lim f(H) = D0\, <1,
H~1" y=1 b,
lim f(H) =+ oo,
H—~0
and
(km-1)p
N ( ka;|p,1 (p; — km) Mol
= R&j V5, B RS . Htm(p,-1)
fCH) ; bp; km(p, — 1)
<0.

Thus, f(H) is a decreasing function strictly in (0,

1).

Therefore, (13) has a unique solution in (0,1).
Then we may obtain the unique solution from (12)
under determined H .

Lemma 5. Under the conditions of Lemma 4,
the maximal value of F (4 ) is reached at its unique
steady point.

Proof. By direct computations, we can verify
that F (k) reaches the maximal value at its unique
steady point.

Lemma 6. Let p; >km=1(i=1,2,:,r) and
by Py A
ka, p -1 ka, py-1 ka, p,-1
— —= =1.
bpy bp, bp, -

Then (11) must have no solution at a point ( Ay, -,

AN

S

R e A R L e

PGS A e

2 e

Lt



356

www. tandf. co. uk/journals

Progress in Natural Science Vol.16 No.4 2006

h) with0< h; <1 (i =1,2,-,7)and0 < > h%
i=1
< 1.

Proof. Secking a contradiction, suppose that the

solution of (11) is attained at a point (hq, -, A, )
with0 < D h% < 1.
=1
When km #1,
U b _f’L
1 [ Ran)hiTt [ Raz| 2 ka, | %7
bp1 bp, bp,
(km— I)Pl , (km— I)pZ
Ehp)km(pl 0 hpl " ( Ehf‘)km(pz—l) . h‘;z
=1
Uem—~1)p,
( Ehp)km(p D e,
s ~E(m.py00) r
< Zl)hf') (S
i= =1
: 1-E(m,p;,p,)
= [ 2 nt) RS
1=1
is not valid.
ka,  , 1
When km =1, (11) becomesbp =h7 (=1,
7
2,*, 7). Thus,
1>
ka;
1< 21) b, Zh” <1
is not valid.
Lemma 7. Under the constraint th' =1,

i=1
F(h) must have the maximal value at the point (h,
e, h,) with0< h; <1 (i=1,2,+,r), and the

maximal value is unique.

Proof. We first prove that F (k) has the maxi-
mal value if the conditional extremum on F(h) ex-
ists. Let

J(hl!“.,h’r,A)
= Sap +a(1-D0n%).
=1 im1
Suppose
aj(h'19.“9hr,A) -1 _
oh, = a; = appyT =0,
J=1,2,,r.
Thus

a, = Apjh‘?f_l,
j=1,2,,r (14)
Furthermore, it is easy to check that F (A ) has the

4
s

maximal value if the conditional extremum on F (%)
exists.

We then prove that the conditional extremum on
F(h) exists and is unique. By (14), we have

pto= | 4 dh
j ,{p} ’
(G =1,2,-,r).
Thus,
2
r a; r-1
Z_‘, vy 1. (15)
b
r a; p1—1
Denoting L(A) = Z(—') , then
i=1 Api
P
, - bi a; %" -1
L'(A) =- — | = “ A 0.
(4) ; pi — 1/ \p <

Therefore, L{A) is a decreasing function strictly on
A. However,

L(A)—>+ o, when A—>0+;
L(A)—>0, when A—>+ o0 .

Thus, (15) uniquely determines A, and (14) u-

niquely determines 4;, j=1,2,"

Now we can compute the minimal circumscribed
ellipsoid of the generalized Hua domain of the first

type.

When p; >km=1 (;=1,2,-,7), and
I P2 JL_
kay p-1 ka, pm1 ka,
— — < 1.
bpy bp, bp,

(16)

By calculations, the extreme value problem
above has a unique solution (and the stable point is u-

nique). The extreme point is

N, n+k;(p—l‘))’

I NP [ SN 5 m
(ZN,-+mn) (—L)’ z(—")) B 22
=1 2, 1\ Pi

i =1,2,,r; 17
n+k2(%)
%: RN (18)

(Z;N,vi—mn).

We can also verify that the function $ really reaches
the minimal value.
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When p; >km=>1 (j =1,2,,7), and

bay| Pl (kag| BT (ke )BT
bp1 bp, bp, =

(19)

It is easy to know that the function $ must reach
the minimum on the curve
2 2 2
21 kay|?al ka, |71
bp, T e, =1

(20)

under condition (19). Curve (20) is the boundary of
domain (16).

kay

bp,y

From the discussion above and noting that the
stable point is unique, we obtain that the function $
must reach the minimal value at the extreme point

(17), (18).

Therefore, we obtain the minimal circumscribed
ellipsoid of the generalized Hua domain of the first

type
i Nl +mn

Amin = {(wlv'"a wr’Z) E C:-t

Selw P+l zIP<1), (1)

=1

where
, km
N (e[ )]
— i=1 Pi
G = 1 k-1
r . r km
(SN ) (B2 )
i=1 Pj i=1 Pi
]:1’2’...’r;
n+k (—1)
d = i=1 pi .
( N,—+mn)

3 The extremal mapping
Now we can obtain the following results:

Theorem 1. When p, >km =1, i=1,-*,r, an
extremal mapping from the generalized Hua domain
of the first type

GHE[(Ny,**,N,; m, n;p1, ", p,; k) to the ball
BiN'+mn is
=1
f:GHEI(Nl,"',N,;m,n;pl,---,pr;k)

—>» B .r .
ZN,+"’"
=1

1
f}l((wlv Tty Wy Z)) = ajzwjl;

j=1,2,,r, L=1,2,,N;.

1
fu-u((wly'“’ wr5Z)) = bzzuv’
u :1,2,"',771, 1}:1,2,"',72.
Here, wj=(w,1,"', ij]); j:l’---’ r, and

km

-, 1 . km=1
[N+ mn) - (D)7 [ 2] 7
i=1 pj =\ P

j=1,,
n+kz &)

b = = Pi )
ZNi+mn
=1

Proof. According to Proposition 1, Proposition
2, Definition 1 and (21), we know that this is true.

Theorem 2. When p; > km =21, i =1, -, r,
the extremal value between the generalized Hua do-
main of the first type GHE; (N, -, N, ;s m, n; pq,

=, p,3k) and the ball B - is
EN,—*”’”"

=1

JS(GHE[(N1, s Nysmynspi, -, prsk)y BSin s mn)
=1

bi

n+kz

i=1

: (N,.))m(m,a(:)) :

i
IR T N Sl
v (3] ooy

i=1
#(GHE[(Ny, =, Nysmyns 01, prs k) BS Iy 4 )
i=1 '

Lz

)

"

. k"”‘,é( Pﬁ)

I i, 7 P 0 W
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7 (5]
. —t . (km-1)| D3| =* r [N
N+mn Ni (p’ Ni S fem ~‘(_")
(N + mn) H o ’ o Rk SIVA
_ _log s\ b =\ b
r N b
2 . . N m ( ntk 2 ( ;‘ ) )
N ; 1=1] t
N:iln + & ( ﬁl) )
i=1 =1\ b
r 3 Caratheodory C. Uber die abbildungen, die durch systeme von ana-
where N = Z N i lytischen funktionen von mehreren veranderlichen erzeugt werden.
i=1 Math. Z., 1932, 34: 758—792.
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